Minimum rank with zero diagonal

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal entry restrictions in minimum rank matrices

Let F be a field, let G be a simple graph on n vertices, and let S (G) be the class of all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For each graph G, there is an associated minimum rank class, M R (G) consisting of all matrices A ∈ S (G) with rankA = mr (G), the minimum rank among all matrices in S (G)....

متن کامل

Zero forcing parameters and minimum rank problems

Abstract. The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a 1 graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by 2 G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive 3 semidefinite zero forcing number Z+(G) is introduced, and ...

متن کامل

Ela Diagonal Entry Restrictions in Minimum Rank Matrices

Let F be a field, let G be a simple graph on n vertices, and let S (G) be the class of all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For each graph G, there is an associated minimum rank class, M R (G) consisting of all matrices A ∈ S (G) with rankA = mr (G), the minimum rank among all matrices in S (G)....

متن کامل

Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs

Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combinatorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a...

متن کامل

Zero forcing sets and the minimum rank of graphs ∗

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2014

ISSN: 1081-3810

DOI: 10.13001/1081-3810.1630